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Abstract

We will demonstrate here the construction of a piecewise-linear,

measure-preserving, non-singular dynamical system on R3, with each

trajectory contained in a bounded set. This is achieved by creating a

nested sequence of PL approximations of solid tori, whose union is R3.

We then build a 1-foliation of each of the nested tori, which is modified

using the slanted suspension construction of [GK],[GKK], to become a

measured foliation of R3, with each leaf contained in a bounded set.

Finally, the leaves in this measured foliation are used to create a PL,

measure-preserving, non-singular, dynamical system, with each orbit

contained in a bounded set.
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PL manifolds

• We assume all manifolds here are PL (piecewise-linear), and that

they can be triangulated.

• All functions are assumed to be PL homeomorphisms, meaning that

they are linear on each simplex in our triangulation.
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Dynamical Systems

• A continuous dynamical system is a triple (R,Ω, π), with Ω a

topological space and π : R× Ω→ Ω, such that

• π is continuous

• For any x ∈ Ω, and any t1, t2 ∈ R, we have π(0, x) = x and

π(t1, π(t2, x)) = π(t1 + t2, x).

• We often write π(t, x) as tx for simplicity.

• γ(x) = {tx : t ∈ R} is the trajectory of x . This set may also be

referred to as the orbit of x .

• A point x ∈ Ω is a fixed point if x = tx for all t ∈ R.

• (R,Ω, π) is a non-singular dynamical system if it contains no fixed

points.
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Measureable dynamics

• Define π−1 : R× Ω→ Ω by π−1(t, x) = π(−t, x).

• For any A ⊂ Ω, define π(t,A) = {π(t, x) : x ∈ A}.
• If µ is a measure on Ω, such that for any measurable set A ⊂ Ω and

any t ∈ R, µ(A) = µ(π−1(t,A)), then (R,Ω, π, µ) is a

measure-preserving dynamical system [Ro].

• Since our manifolds are all PL, we assume our measures are

simplicial, that is, the measure is equivalent to Lebesgue measure on

each simplex (after embedding into Rn under a chart map.)
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Simplicial measures

Thanks to G. Kuperberg [GK], we have a a piecewise-linear analog of the

results of Moser [Mos], which allows us to move between simplicial

measures on PL manifolds.

Theorem

Two simplicial measures on a connected, compact, PL-manifold, with the

same total volume, are equivalent under a PL homeomorphism.

Moreover, any simplicial measure is locally PL-Lebesgue.
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Starting point for the construction

Inspiration for the construction comes from Jones and Yorke [JY].
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Make the tori PL

• By a PL torus, we mean a triangulated torus with 16 subdivisions

around the major circumference, and 64 subdivisions around the

minor circumference.

• Let TPL
0 be a PL torus, in the xy -plane, centered at the origin, with

minor radius m0 = 1 and major radius M0 = 4.

• Let TPL
1 be a PL torus, in the yz-plane, centered at (0,48,0), with

minor radius m1 = 10 and major radius M1 = 48. Rotate the entire

torus by an angle of π/16.

• Let TPL
n be a PL torus, in the xy -plane if n is even, and the yz-plane

if n is odd, centered at (0,(4)12n,0), with minor radius mn = 5
2Mn−1

and major radius Mn = 12Mn−1. Again, rotate by π/16 after each

construction.
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Make the tori PL

Finding explicit formulas for the dynamical system we want on this torus

will be difficult, so we move to a foliation.
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1-foliations

Let M be an n-manifold. Fix some indexing set A. Let F = {Lα : α ∈ A}
be a collection of arcwise connected subsets of M. F is a 1-dimensional

foliation of M if

(i) Lα ∩ Lβ = ∅ for α 6= β

(ii)
⋃
α∈A Lα = M.

(iii) Given any point p ∈ M, there exists a chart of (Uλ, ϕλ) about p,

such that for Lα with Lα ∩ Uλ 6= ∅, each path component of

ϕ(Lα ∩ Uλ) is of the form

{x1 ∈ ϕλ(Uλ) : x2 = c1, x3 = c2, . . . , xn = cn−1}

where each ci is a constant determined by Lα.
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Each Lα is a leaf of the foliation F . We can view the embeddings as

splitting Rn into two pieces, R and Rn−1. On R, the coordinates of the

embedding vary with Lα, but on Rn−1, the coordinates are fixed.

[H, LN] We say the foliation is oriented if the embedding preserves the

usual orientation of R [T].
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Foliated torus
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Measured Foliations

Begin with some manifold M and a 1-foliation F .

• Take a collection of closed disks called flow boxes of the form

Dk × Dn−k , whose interiors cover M.

• Each Lα passing through a flow box to intersect the box in a

collection of horizontal disks Dk × {y}.
• A transversal T is a smooth (n − k)-dimensional submanifold which

is transverse to each Lα.

• T is small if it can be surrounded by a single flow box.

• A transverse measure µ on F is a function which assigns each small

transversal a finite non-negative number[RS].
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Measured Foliations

• µ must be additive on a union of transversals.

• Given two transversals, α, β, a measure µ is invariant if, when α and

β are isotopic, with isotopy parallel to the foliation, then

µ(α) = µ(β).

• Then the pair (F , µ) is a measured foliation. [FLP]
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Example

Start with a flow box
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Example

Only one coordinate changes on each leaf.

15



Example

Add in a transversal, which we call α.

α
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Example

Add coordinates, and define µ(α) = 2

(−1,−1) (1,−1)

(1, 1)(−1, 1)

α
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Isotopies of transversals

(−1,−1) (1,−1)

(1, 1)(−1, 1)

αβ
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Isotopies of transversals

(−1,−1) (1,−1)

(1, 1)(−1, 1)

αβ
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From foliations to dynamics

We can describe how to foliate our nested tori, but we need to be sure

we can end up with a dynamical system to satisfy our theorem.
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Hyperboloid Example

Let M be the hyperboloid of one sheet in R3, given by the parametric

equations

x =
√
u2 + 1 cos(v)

y =
√

u2 + 1 sin(v)

z = u

for u ∈ [−1, 1] and v ∈ [0, 2π].

Assume M is foliated by circular leaves, lying parallel to the xy -plane
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Hyperboloid Example

22



Hyperboloid Example

• Let α be a transversal on M.

• Assume there exists a transversal β, with α isotopic to β. We must

show that their transverse measures are equal.

• Since our leaves are circular and parallel to the xy -plane in R3, when

the chart map is applied, the change in the y coordinate on each

small transversal that makes up α will be kept constant during an

isotopy parallel to the leaves that moves α to β. Therefore,

µ(α) = µ(β).
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Isotopic transversals

To give a specific example, let α be the transversal connecting the points

(
√

2, 0, 1) and (
√

2, 0,−1), and β connect the points (0,
√

2, 1) and

(0,
√

2,−1).

24



Isotopic transversals

To give a specific example, let α be the transversal connecting the points

(
√

2, 0, 1) and (
√

2, 0,−1), and β connect the points (0,
√

2, 1) and

(0,
√

2,−1).

24



Verifying the foliation is measured.

The function f : α× [0, 1]→ β is

f (x , y , z , t) = (
√

2 cos( tπ
2 ),
√

2 sin( tπ
2 ), z).

This gives α when t = 0, β when t = 1, and is an isotopy.

We can also see that µ(α) = µ(β).

We conclude that (M,F) is a measured foliation.
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Getting to a dynamical system

• Each leaf in this foliation is circular.

• Fix the set α as above.

• Define the length of a leaf in F by fixing a point on the leaf in α

and measuring the metric distance along the leaf, following the

orientation, until the leaf intersects α again.

α is transverse to all of F , and each leaf in F intersects α exactly once.

26



Getting to a dynamical system

• Each leaf in this foliation is circular.

• Fix the set α as above.

• Define the length of a leaf in F by fixing a point on the leaf in α

and measuring the metric distance along the leaf, following the

orientation, until the leaf intersects α again.

α is transverse to all of F , and each leaf in F intersects α exactly once.

26



Getting to a dynamical system

• Each leaf in this foliation is circular.

• Fix the set α as above.

• Define the length of a leaf in F by fixing a point on the leaf in α

and measuring the metric distance along the leaf, following the

orientation, until the leaf intersects α again.

α is transverse to all of F , and each leaf in F intersects α exactly once.

26



Getting to a dynamical system

• Each leaf in this foliation is circular.

• Fix the set α as above.

• Define the length of a leaf in F by fixing a point on the leaf in α

and measuring the metric distance along the leaf, following the

orientation, until the leaf intersects α again.

α is transverse to all of F , and each leaf in F intersects α exactly once.

26



• For a given p0 ∈ M, let l(p0) be the length of the leaf containing p0.

• For a point p0 ∈ M, define π : R×M → M, by letting π(t, p0) be

the pre-image (under the chart map) of the point ϕλ(p0) + l(p0)t,

which shifts the point along the image of the leaf l(p0)t units.

• Since the chart maps in the foliation are continuous, π is continuous.

• π(0, p0) = p0 (since it is not translated along the leaf at all)

• π(t1, (π(t2, p0)) = π(t1 + t2, p0) (since two translations along R are

easily composed).

• Therefore the definition of a dynamical system is satisfied by

(M,R, π).

27



• For a given p0 ∈ M, let l(p0) be the length of the leaf containing p0.

• For a point p0 ∈ M, define π : R×M → M, by letting π(t, p0) be

the pre-image (under the chart map) of the point ϕλ(p0) + l(p0)t,

which shifts the point along the image of the leaf l(p0)t units.

• Since the chart maps in the foliation are continuous, π is continuous.

• π(0, p0) = p0 (since it is not translated along the leaf at all)

• π(t1, (π(t2, p0)) = π(t1 + t2, p0) (since two translations along R are

easily composed).

• Therefore the definition of a dynamical system is satisfied by

(M,R, π).

27



• For a given p0 ∈ M, let l(p0) be the length of the leaf containing p0.

• For a point p0 ∈ M, define π : R×M → M, by letting π(t, p0) be

the pre-image (under the chart map) of the point ϕλ(p0) + l(p0)t,

which shifts the point along the image of the leaf l(p0)t units.

• Since the chart maps in the foliation are continuous, π is continuous.

• π(0, p0) = p0 (since it is not translated along the leaf at all)

• π(t1, (π(t2, p0)) = π(t1 + t2, p0) (since two translations along R are

easily composed).

• Therefore the definition of a dynamical system is satisfied by

(M,R, π).

27



• For a given p0 ∈ M, let l(p0) be the length of the leaf containing p0.

• For a point p0 ∈ M, define π : R×M → M, by letting π(t, p0) be

the pre-image (under the chart map) of the point ϕλ(p0) + l(p0)t,

which shifts the point along the image of the leaf l(p0)t units.

• Since the chart maps in the foliation are continuous, π is continuous.

• π(0, p0) = p0 (since it is not translated along the leaf at all)

• π(t1, (π(t2, p0)) = π(t1 + t2, p0) (since two translations along R are

easily composed).

• Therefore the definition of a dynamical system is satisfied by

(M,R, π).

27



• For a given p0 ∈ M, let l(p0) be the length of the leaf containing p0.

• For a point p0 ∈ M, define π : R×M → M, by letting π(t, p0) be

the pre-image (under the chart map) of the point ϕλ(p0) + l(p0)t,

which shifts the point along the image of the leaf l(p0)t units.

• Since the chart maps in the foliation are continuous, π is continuous.

• π(0, p0) = p0 (since it is not translated along the leaf at all)

• π(t1, (π(t2, p0)) = π(t1 + t2, p0) (since two translations along R are

easily composed).

• Therefore the definition of a dynamical system is satisfied by

(M,R, π).

27



• For a given p0 ∈ M, let l(p0) be the length of the leaf containing p0.

• For a point p0 ∈ M, define π : R×M → M, by letting π(t, p0) be

the pre-image (under the chart map) of the point ϕλ(p0) + l(p0)t,

which shifts the point along the image of the leaf l(p0)t units.

• Since the chart maps in the foliation are continuous, π is continuous.

• π(0, p0) = p0 (since it is not translated along the leaf at all)

• π(t1, (π(t2, p0)) = π(t1 + t2, p0) (since two translations along R are

easily composed).

• Therefore the definition of a dynamical system is satisfied by

(M,R, π).

27



Verification of measure-preserving

• We have µ as the transverse measure on F .

• Let A ⊂ M.

• Let ωM be the Riemannian volume form on M.

• Decompose A as a union of small transversals.

• Think of points on M in cylindrical coordinates.
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• Our chart maps preserve the orientation of leaves in the x direction,

so π−1(t,A) will rotate A around M, scaled by the length of each

leaf going through each point in A, so the change in θ between any

two points in A is preserved under π−1.

• For any fixed angle of rotation around the hyperboloid, the metric

on M is determined by r and z , and that distance is represented by

changes in the x-coordinates under the chart map.

• The invariance of µ with respect to the x-direction after the chart

map is applied, will preserve the change in the remaining

components of ωM under π−1(t,A).
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• Therefore each point in A will have it’s r and z coordinates

preserved under f −1(t,A), and while each point will move a

different distance, the change in the angle θ will be the same for

each point. We conclude that ωM is preserved under π−1(t,A) for

any choice of t ∈ R.

• Let ν be the measure associated with ωM , then, (M,R, f , ν) is a

measure-preserving dynamical system.
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Following a similar construction

Theorem

An oriented, measured, 1-foliation (F , µ) on a compact, connected,

orientable 3-manifold, yields a measure-preserving dynamical system.

This is a simplification of the results in Plante [P], Walczak [Wa], and

Hurder [H, LN]. It is sufficient for our purposes here. R3 of course is not

compact, but we can work around this.
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Back to the tori
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Slanted suspensions

• Let H be a compact manifold, with f : H × [a, b]→ H × [a, b] be a

PL homeomorphism.

• Fix a real number l ∈ (0, 1).

• For each fixed point x ∈ H and y ∈ [a, b], let

Lxy = {(x , y + lz , z) : y + lz ∈ [a, b] and z ∈ [0, 1]}.
• L = {Lxy : ∀(x , y) ∈ H × [a, b]} is a foliation of H × [a, b]× [0, 1],

with leaves oriented from H × [a, b]× {0} to H × [a, b]× {1}.
• The slanted suspension of H × [a, b] with slant l is the foliation of

the quotient space generated by the equivalence

(f (x , y), 0) ∼ (x , y , 1), with a foliation F induced by L. [GKK]

• Denote this as M∼f ,l .
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Example

• H be a single point, and [a, b] = [0, 1]. We construct a slanted

suspension with a singled fixed circular orbit.

• Let f : [0, 1]→ [0, 1] be given by

f (x) =

{
2x − 1 if x ∈ [1/2, 1]

2x
3 else

• Take the slanted suspension with slant 1/4. The points 0 and 1 are

fixed and f (3/4) = 1/2.
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• There is a leaf from (1/2, 0) to (3/4, 1). This leaf comes from the

slant, but the point (3/4, 1) has the first coordinate shifted down by

the same amount as the slant of the suspension. Thus (3/4, 1) is

identified with (1/2, 0), creating a fixed circular leaf in the foliation.
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Theorem

Let M be a 2 dimensional PL-manifold, µ a simplicial measure on M, and

f a measure-preserving PL-homeomorphism on M. Then the foliation

M∼,f ,l given by the slanted suspension of M under f , with slant l , is

measured.
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Flow bordisms and plugs

We wish to describe the boundary of a PL n-manifold M in terms of the

foliation as being parallel boundary or transverse boundary.[GKK]

• The parallel boundary is a subset of the boundary of M such that

the embedding of the foliation into the upper half-space of Rn is

modeled by a foliation consisting entirely of horizontal lines.

• The transverse boundary is the subset where the same embedding

consists entirely of vertical lines.

• A manifold may also be said to have corners, if the boundary of the

manifold is piecewise of the same smoothness category as the

manifold itself.
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[GK]
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Given a connected, compact manifold P, a flow bordism P is an oriented

1-foliation of P, such that all boundary of P is either transverse, parallel,

or corners [GKK].

Let F− be the closure of the transverse boundary oriented inwards, and

F+ be the closure of the transverse boundary oriented outwards. We have

two additional properties in which we are interested.

(i) There exists an infinite leaf with an endpoint in F−

(ii) There exists a manifold F and two homeomorphisms α− : F → F−,

α+ : F → F+ such that if α+(p) and α−(q) are endpoints of a leaf

of P, then p = q.
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• If a flow bordism satisfies condition (i), but not condition (ii), it is a

semi-plug.

• A flow bordism which satisfies (ii) but not (i) is an un-plug.

• If P has properties (i) and (ii), it is a plug.

• If P is a plug, the manifold P is the support of P.

[GKK]
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Modification of a foliation using a plug requires the operation of insertion.

Let P be a flow bordism, and F a foliation on some manifold M.

• An insertion map is an embedding of P, in which both F− and F+

are transverse to F .

• A flow bordism P is insertible if there is an embedding of P into Rn

which is transverse to vertical lines [GKK].

We are looking for a way to modify an existing foliation, by taking leaves

whose image under the chart map is that of vertical lines in Rn, and

replacing a portion of these leaves with the leaves in our flow bordism.
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A flow bordism with a torus in the middle

We will construct a slanted suspension that gives us a PL version of this.
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A flow bordism with a torus in the middle

We are looking for a PL way to make this sort of transformation, to get

the parallel boundary we need..
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Theorem

Let M = [a, b]× [c , d ], and f : M → M a PL-homeomorphism. Take the

slanted suspension of M with slant l . If for all p ∈ ∂M, f (p) 6= p − l ,

then M∼,f ,l may be made into a flow bordism, via a leaf-preserving map

g : M∼,f ,l → M∼,f ,l . Furthermore, if M∼,f ,l is a measured-foliation, g

may be chosen such that g(M∼,f ,l) remains measured.

Corollary

A PL flow bordism, with an invariant transverse measure, admits a PL

dynamical system, which preserves measure.
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Example

v0 v1 v0

v2
v3 v2

v4 v5 v4
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50



Building the main result

• Start with the nested tori defined earlier

50



Building the main result

• Start with the nested tori defined earlier.

• Use the slanted suspension to build a flow bordism that can be

inserted around each torus.

• Show that the insertion doesn’t change the topology of R3.

• Verify that the foliation is still measured on all of R3.
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Building our slanted suspension

Let M = [−3, 3]× [−2, 2]. Triangulate M, and let f : M → M be the PL

homeomorphism, which preserves area on 2-simplices, and shifts the

vertices of the square [−1, 1]× [−1, 1] region down 1/4.

(−3, 2) (3, 2)

(−3,−2) (3,−2)

(−1, 1)

(1,−1)
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(−3, 2) (3, 2)

(−3,−2) (3,−2)

(−1, 3/4)

(1,−5/4)
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Following the leaves

• Take the slanted suspension M∼,f ,1/4

• f preserves area on the 2-simplices here, so the slanted suspension is

a measured foliation.

• f is the identity on the boundary of M, so the conditions in our

earlier theorem are satisfied, and (M∼,f ,1/4 can be made into a

measured flow bordism.

• The vertices of the square [−1, 1]× [−1, 1] are shifted down by 1/4,

and the slant of the suspension is 1/4, so all leaves with points in

the boundary of this square are circular.

• We can use a Poincare return map to see where the leaves intersect

M at each iteration.
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Trajectories originating at (0.1,-2) and (-0.1,-2)
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Trajectories originating at (1/2,-2) and (-1/2,-2)
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Trajectories originating at (1,-2) and (-1,-2)
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Removing tori from the slanted suspensions

• Our slanted suspension gives us a measured flow bordism.

• In the middle of each of these slanted suspensions, there is a PL

solid torus, whose boundary of foliated by circular leaves.

• Scale up the size of the flow bordism until the total volume of the

torus in the middle and the total volume of TPL
i are the same, so we

can use G. Kuperberg’s theorem from earlier.

• If we can carefully remove that torus, we can insert scaled copies of

the slanted suspension around each of the nested tori in our earlier

construction.

• We were careful to construct our earlier foliation so that all of the

leaves near each nested torus are vertical, so our flow bordism will

insert nicely.
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• We were careful to construct our earlier foliation so that all of the

leaves near each nested torus are vertical, so our flow bordism will

insert nicely.
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Dehn Surgery

• Begin with a 3-manifold, and pick a solid torus in it’s interior.

• Identify a closed curve on the boundary of the torus, the meridian,

which bounds a disc.
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Dehn Surgery

• Take another circle in the boundary of a torus, the longitude, which

may or may not equal the meridian.

• By removing the torus from the 3-manifold, and gluing in a new one,

with the longitude glued along the meridian, we effect a Dehn

Surgery [G].

• Dehn Surgery can change the topology of the manifold [L]. We

make careful choices to avoid this.
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• In our construction, we will choose a meridian on the boundary of

each torus in our nested tori.

• The longitude for the torus removed from the interior of our slanted

suspension flow bordism will be chosen to match the meridian on

the nested tori.

• This ensures that our gluing does not change the topology of R3.
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Summary

• Start with our nested sequence of tori (TPL
n ).

• Foliate each of these tori by ”circles”.

• Scale up the flow bordisms from the slanted suspension, so that

each can be inserted around TPL
i .

• This agrees with the existing foliation, so the foliation of each torus

is measured.

• G. Kuperberg’s theorem gives us that the simplicial measures can be

made to agree.

• The tori are large enough and nested in such a way that the insertion

around TPL
i does not affect the leaves in the boundary of TPL

i+1.

• Since each torus now possesses a measured-foliation, we have a

non-singular, measure-preserving dynamical system on each torus.

• All orbits beginning in one torus remain there, so all orbits are

bounded.

• We therefore have a piecewise-linear, measure-preserving,

non-singular dynamical system on R3, with each trajectory contained

in a bounded set.
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