Measure-preserving PL dynamical systems in \mathbb{R}^{3} with bounded trajectories

Jeff Ford
10/2/17
Auburn University

Abstract

We will demonstrate here the construction of a piecewise-linear, measure-preserving, non-singular dynamical system on \mathbb{R}^{3}, with each trajectory contained in a bounded set. This is achieved by creating a nested sequence of $P L$ approximations of solid tori, whose union is \mathbb{R}^{3}. We then build a 1-foliation of each of the nested tori, which is modified using the slanted suspension construction of [GK],[GKK], to become a measured foliation of \mathbb{R}^{3}, with each leaf contained in a bounded set. Finally, the leaves in this measured foliation are used to create a PL, measure-preserving, non-singular, dynamical system, with each orbit contained in a bounded set.

PL manifolds

- We assume all manifolds here are PL (piecewise-linear), and that they can be triangulated.

PL manifolds

- We assume all manifolds here are PL (piecewise-linear), and that they can be triangulated.
- All functions are assumed to be $P L$ homeomorphisms, meaning that they are linear on each simplex in our triangulation.

Dynamical Systems

- A continuous dynamical system is a triple $(\mathbb{R}, \Omega, \pi)$, with Ω a topological space and $\pi: \mathbb{R} \times \Omega \rightarrow \Omega$, such that
- π is continuous
- For any $x \in \Omega$, and any $t_{1}, t_{2} \in \mathbb{R}$, we have $\pi(0, x)=x$ and $\pi\left(t_{1}, \pi\left(t_{2}, x\right)\right)=\pi\left(t_{1}+t_{2}, x\right)$.

Dynamical Systems

- A continuous dynamical system is a triple $(\mathbb{R}, \Omega, \pi)$, with Ω a topological space and $\pi: \mathbb{R} \times \Omega \rightarrow \Omega$, such that
- π is continuous
- For any $x \in \Omega$, and any $t_{1}, t_{2} \in \mathbb{R}$, we have $\pi(0, x)=x$ and $\pi\left(t_{1}, \pi\left(t_{2}, x\right)\right)=\pi\left(t_{1}+t_{2}, x\right)$.
- We often write $\pi(t, x)$ as $t x$ for simplicity.

Dynamical Systems

- A continuous dynamical system is a triple $(\mathbb{R}, \Omega, \pi)$, with Ω a topological space and $\pi: \mathbb{R} \times \Omega \rightarrow \Omega$, such that
- π is continuous
- For any $x \in \Omega$, and any $t_{1}, t_{2} \in \mathbb{R}$, we have $\pi(0, x)=x$ and $\pi\left(t_{1}, \pi\left(t_{2}, x\right)\right)=\pi\left(t_{1}+t_{2}, x\right)$.
- We often write $\pi(t, x)$ as $t x$ for simplicity.
- $\gamma(x)=\{t x: t \in \mathbb{R}\}$ is the trajectory of x. This set may also be referred to as the orbit of x.

Dynamical Systems

- A continuous dynamical system is a triple $(\mathbb{R}, \Omega, \pi)$, with Ω a topological space and $\pi: \mathbb{R} \times \Omega \rightarrow \Omega$, such that
- π is continuous
- For any $x \in \Omega$, and any $t_{1}, t_{2} \in \mathbb{R}$, we have $\pi(0, x)=x$ and

$$
\pi\left(t_{1}, \pi\left(t_{2}, x\right)\right)=\pi\left(t_{1}+t_{2}, x\right) .
$$

- We often write $\pi(t, x)$ as $t x$ for simplicity.
- $\gamma(x)=\{t x: t \in \mathbb{R}\}$ is the trajectory of x. This set may also be referred to as the orbit of x.
- A point $x \in \Omega$ is a fixed point if $x=t x$ for all $t \in \mathbb{R}$.

Dynamical Systems

- A continuous dynamical system is a triple (\mathbb{R}, Ω, π), with Ω a topological space and $\pi: \mathbb{R} \times \Omega \rightarrow \Omega$, such that
- π is continuous
- For any $x \in \Omega$, and any $t_{1}, t_{2} \in \mathbb{R}$, we have $\pi(0, x)=x$ and $\pi\left(t_{1}, \pi\left(t_{2}, x\right)\right)=\pi\left(t_{1}+t_{2}, x\right)$.
- We often write $\pi(t, x)$ as $t x$ for simplicity.
- $\gamma(x)=\{t x: t \in \mathbb{R}\}$ is the trajectory of x. This set may also be referred to as the orbit of x.
- A point $x \in \Omega$ is a fixed point if $x=t x$ for all $t \in \mathbb{R}$.
- $(\mathbb{R}, \Omega, \pi)$ is a non-singular dynamical system if it contains no fixed points.

Measureable dynamics

- Define $\pi^{-1}: \mathbb{R} \times \Omega \rightarrow \Omega$ by $\pi^{-1}(t, x)=\pi(-t, x)$.

Measureable dynamics

- Define $\pi^{-1}: \mathbb{R} \times \Omega \rightarrow \Omega$ by $\pi^{-1}(t, x)=\pi(-t, x)$.
- For any $A \subset \Omega$, define $\pi(t, A)=\{\pi(t, x): x \in A\}$.

Measureable dynamics

- Define $\pi^{-1}: \mathbb{R} \times \Omega \rightarrow \Omega$ by $\pi^{-1}(t, x)=\pi(-t, x)$.
- For any $A \subset \Omega$, define $\pi(t, A)=\{\pi(t, x): x \in A\}$.
- If μ is a measure on Ω, such that for any measurable set $A \subset \Omega$ and any $t \in \mathbb{R}, \mu(A)=\mu\left(\pi^{-1}(t, A)\right)$, then $(\mathbb{R}, \Omega, \pi, \mu)$ is a measure-preserving dynamical system $[\mathrm{Ro}]$.

Measureable dynamics

- Define $\pi^{-1}: \mathbb{R} \times \Omega \rightarrow \Omega$ by $\pi^{-1}(t, x)=\pi(-t, x)$.
- For any $A \subset \Omega$, define $\pi(t, A)=\{\pi(t, x): x \in A\}$.
- If μ is a measure on Ω, such that for any measurable set $A \subset \Omega$ and any $t \in \mathbb{R}, \mu(A)=\mu\left(\pi^{-1}(t, A)\right)$, then $(\mathbb{R}, \Omega, \pi, \mu)$ is a measure-preserving dynamical system [Ro].
- Since our manifolds are all PL, we assume our measures are simplicial, that is, the measure is equivalent to Lebesgue measure on each simplex (after embedding into \mathbb{R}^{n} under a chart map.)

Simplicial measures

Thanks to G. Kuperberg [GK], we have a a piecewise-linear analog of the results of Moser [Mos], which allows us to move between simplicial measures on PL manifolds.

Simplicial measures

Thanks to G. Kuperberg [GK], we have a a piecewise-linear analog of the results of Moser [Mos], which allows us to move between simplicial measures on PL manifolds.

Theorem

Two simplicial measures on a connected, compact, PL-manifold, with the same total volume, are equivalent under a PL homeomorphism.
Moreover, any simplicial measure is locally PL-Lebesgue.

Simplicial measures

Thanks to G. Kuperberg [GK], we have a a piecewise-linear analog of the results of Moser [Mos], which allows us to move between simplicial measures on PL manifolds.

Theorem

Two simplicial measures on a connected, compact, PL-manifold, with the same total volume, are equivalent under a PL homeomorphism.
Moreover, any simplicial measure is locally PL-Lebesgue.

Starting point for the construction

Inspiration for the construction comes from Jones and Yorke [JY].

Starting point for the construction

Inspiration for the construction comes from Jones and Yorke [JY].

Make the tori $P L$

- By a $P L$ torus, we mean a triangulated torus with 16 subdivisions around the major circumference, and 64 subdivisions around the minor circumference.

Make the tori $P L$

- By a $P L$ torus, we mean a triangulated torus with 16 subdivisions around the major circumference, and 64 subdivisions around the minor circumference.
- Let $T_{0}^{P L}$ be a $P L$ torus, in the $x y$-plane, centered at the origin, with minor radius $m_{0}=1$ and major radius $M_{0}=4$.

Make the tori $P L$

- By a $P L$ torus, we mean a triangulated torus with 16 subdivisions around the major circumference, and 64 subdivisions around the minor circumference.
- Let $T_{0}^{P L}$ be a $P L$ torus, in the $x y$-plane, centered at the origin, with minor radius $m_{0}=1$ and major radius $M_{0}=4$.
- Let $T_{1}^{P L}$ be a $P L$ torus, in the $y z$-plane, centered at $(0,48,0)$, with minor radius $m_{1}=10$ and major radius $M_{1}=48$. Rotate the entire torus by an angle of $\pi / 16$.

Make the tori $P L$

- By a $P L$ torus, we mean a triangulated torus with 16 subdivisions around the major circumference, and 64 subdivisions around the minor circumference.
- Let $T_{0}^{P L}$ be a $P L$ torus, in the $x y$-plane, centered at the origin, with minor radius $m_{0}=1$ and major radius $M_{0}=4$.
- Let $T_{1}^{P L}$ be a $P L$ torus, in the $y z$-plane, centered at $(0,48,0)$, with minor radius $m_{1}=10$ and major radius $M_{1}=48$. Rotate the entire torus by an angle of $\pi / 16$.
- Let $T_{n}^{P L}$ be a $P L$ torus, in the $x y$-plane if n is even, and the $y z$-plane if n is odd, centered at $\left(0,(4) 12^{n}, 0\right)$, with minor radius $m_{n}=\frac{5}{2} M_{n-1}$ and major radius $M_{n}=12 M_{n-1}$. Again, rotate by $\pi / 16$ after each construction.

Make the tori $P L$

Make the tori $P L$

1-foliations

Let M be an n-manifold. Fix some indexing set A. Let $\mathcal{F}=\left\{L_{\alpha}: \alpha \in A\right\}$ be a collection of arcwise connected subsets of $M . \mathcal{F}$ is a 1 -dimensional foliation of M if
(i) $L_{\alpha} \cap L_{\beta}=\emptyset$ for $\alpha \neq \beta$
(ii) $\bigcup_{\alpha \in A} L_{\alpha}=M$.
(iii) Given any point $p \in M$, there exists a chart of $\left(U_{\lambda}, \varphi_{\lambda}\right)$ about p, such that for L_{α} with $L_{\alpha} \cap U_{\lambda} \neq \emptyset$, each path component of $\varphi\left(L_{\alpha} \cap U_{\lambda}\right)$ is of the form

$$
\left\{x_{1} \in \varphi_{\lambda}\left(U_{\lambda}\right): x_{2}=c_{1}, x_{3}=c_{2}, \ldots, x_{n}=c_{n-1}\right\}
$$

where each c_{i} is a constant determined by L_{α}.

Each L_{α} is a leaf of the foliation \mathcal{F}. We can view the embeddings as splitting \mathbb{R}^{n} into two pieces, \mathbb{R} and \mathbb{R}^{n-1}. On \mathbb{R}, the coordinates of the embedding vary with L_{α}, but on \mathbb{R}^{n-1}, the coordinates are fixed.

Each L_{α} is a leaf of the foliation \mathcal{F}. We can view the embeddings as splitting \mathbb{R}^{n} into two pieces, \mathbb{R} and \mathbb{R}^{n-1}. On \mathbb{R}, the coordinates of the embedding vary with L_{α}, but on \mathbb{R}^{n-1}, the coordinates are fixed.

[H, LN]

Each L_{α} is a leaf of the foliation \mathcal{F}. We can view the embeddings as splitting \mathbb{R}^{n} into two pieces, \mathbb{R} and \mathbb{R}^{n-1}. On \mathbb{R}, the coordinates of the embedding vary with L_{α}, but on \mathbb{R}^{n-1}, the coordinates are fixed.

[H, LN] We say the foliation is oriented if the embedding preserves the usual orientation of $\mathbb{R}[T]$.

Foliated torus

Measured Foliations

Begin with some manifold M and a 1-foliation \mathcal{F}.

- Take a collection of closed disks called flow boxes of the form $D_{k} \times D_{n-k}$, whose interiors cover M.

Measured Foliations

Begin with some manifold M and a 1 -foliation \mathcal{F}.

- Take a collection of closed disks called flow boxes of the form $D_{k} \times D_{n-k}$, whose interiors cover M.
- Each \mathcal{L}_{α} passing through a flow box to intersect the box in a collection of horizontal disks $D_{k} \times\{y\}$.

Measured Foliations

Begin with some manifold M and a 1-foliation \mathcal{F}.

- Take a collection of closed disks called flow boxes of the form $D_{k} \times D_{n-k}$, whose interiors cover M.
- Each \mathcal{L}_{α} passing through a flow box to intersect the box in a collection of horizontal disks $D_{k} \times\{y\}$.
- A transversal T is a smooth $(n-k)$-dimensional submanifold which is transverse to each \mathcal{L}_{α}.

Measured Foliations

Begin with some manifold M and a 1-foliation \mathcal{F}.

- Take a collection of closed disks called flow boxes of the form $D_{k} \times D_{n-k}$, whose interiors cover M.
- Each \mathcal{L}_{α} passing through a flow box to intersect the box in a collection of horizontal disks $D_{k} \times\{y\}$.
- A transversal T is a smooth $(n-k)$-dimensional submanifold which is transverse to each \mathcal{L}_{α}.
- T is small if it can be surrounded by a single flow box.

Measured Foliations

Begin with some manifold M and a 1-foliation \mathcal{F}.

- Take a collection of closed disks called flow boxes of the form $D_{k} \times D_{n-k}$, whose interiors cover M.
- Each \mathcal{L}_{α} passing through a flow box to intersect the box in a collection of horizontal disks $D_{k} \times\{y\}$.
- A transversal T is a smooth $(n-k)$-dimensional submanifold which is transverse to each \mathcal{L}_{α}.
- T is small if it can be surrounded by a single flow box.
- A transverse measure μ on \mathcal{F} is a function which assigns each small transversal a finite non-negative number[RS].

Measured Foliations

- μ must be additive on a union of transversals.

Measured Foliations

- μ must be additive on a union of transversals.
- Given two transversals, α, β, a measure μ is invariant if, when α and β are isotopic, with isotopy parallel to the foliation, then $\mu(\alpha)=\mu(\beta)$.

Measured Foliations

- μ must be additive on a union of transversals.
- Given two transversals, α, β, a measure μ is invariant if, when α and β are isotopic, with isotopy parallel to the foliation, then $\mu(\alpha)=\mu(\beta)$.
- Then the pair (\mathcal{F}, μ) is a measured foliation. [FLP]

Example

Start with a flow box

Example

Only one coordinate changes on each leaf.

Example

Add in a transversal, which we call α.

Example

Add coordinates, and define $\mu(\alpha)=2$

Isotopies of transversals

Isotopies of transversals

From foliations to dynamics

We can describe how to foliate our nested tori, but we need to be sure we can end up with a dynamical system to satisfy our theorem.

Hyperboloid Example

Let M be the hyperboloid of one sheet in \mathbb{R}^{3}, given by the parametric equations

$$
\begin{aligned}
& x=\sqrt{u^{2}+1} \cos (v) \\
& y=\sqrt{u^{2}+1} \sin (v) \\
& z=u
\end{aligned}
$$

for $u \in[-1,1]$ and $v \in[0,2 \pi]$.

Hyperboloid Example

Let M be the hyperboloid of one sheet in \mathbb{R}^{3}, given by the parametric equations

$$
\begin{aligned}
& x=\sqrt{u^{2}+1} \cos (v) \\
& y=\sqrt{u^{2}+1} \sin (v) \\
& z=u
\end{aligned}
$$

for $u \in[-1,1]$ and $v \in[0,2 \pi]$.
Assume M is foliated by circular leaves, lying parallel to the $x y$-plane

Hyperboloid Example

Hyperboloid Example

- Let α be a transversal on M.

Hyperboloid Example

- Let α be a transversal on M.
- Assume there exists a transversal β, with α isotopic to β. We must show that their transverse measures are equal.

Hyperboloid Example

- Let α be a transversal on M.
- Assume there exists a transversal β, with α isotopic to β. We must show that their transverse measures are equal.
- Since our leaves are circular and parallel to the $x y$-plane in \mathbb{R}^{3}, when the chart map is applied, the change in the y coordinate on each small transversal that makes up α will be kept constant during an isotopy parallel to the leaves that moves α to β. Therefore, $\mu(\alpha)=\mu(\beta)$.

Isotopic transversals

To give a specific example, let α be the transversal connecting the points $(\sqrt{2}, 0,1)$ and $(\sqrt{2}, 0,-1)$, and β connect the points $(0, \sqrt{2}, 1)$ and $(0, \sqrt{2},-1)$.

Isotopic transversals

To give a specific example, let α be the transversal connecting the points $(\sqrt{2}, 0,1)$ and $(\sqrt{2}, 0,-1)$, and β connect the points $(0, \sqrt{2}, 1)$ and $(0, \sqrt{2},-1)$.

Verifying the foliation is measured.

The function $f: \alpha \times[0,1] \rightarrow \beta$ is $f(x, y, z, t)=\left(\sqrt{2} \cos \left(\frac{t \pi}{2}\right), \sqrt{2} \sin \left(\frac{t \pi}{2}\right), z\right)$.

Verifying the foliation is measured.

The function $f: \alpha \times[0,1] \rightarrow \beta$ is $f(x, y, z, t)=\left(\sqrt{2} \cos \left(\frac{t \pi}{2}\right), \sqrt{2} \sin \left(\frac{t \pi}{2}\right), z\right)$.

This gives α when $t=0, \beta$ when $t=1$, and is an isotopy.

Verifying the foliation is measured.

The function $f: \alpha \times[0,1] \rightarrow \beta$ is $f(x, y, z, t)=\left(\sqrt{2} \cos \left(\frac{t \pi}{2}\right), \sqrt{2} \sin \left(\frac{t \pi}{2}\right), z\right)$.

This gives α when $t=0, \beta$ when $t=1$, and is an isotopy.
We can also see that $\mu(\alpha)=\mu(\beta)$.

Verifying the foliation is measured.

The function $f: \alpha \times[0,1] \rightarrow \beta$ is $f(x, y, z, t)=\left(\sqrt{2} \cos \left(\frac{t \pi}{2}\right), \sqrt{2} \sin \left(\frac{t \pi}{2}\right), z\right)$.

This gives α when $t=0, \beta$ when $t=1$, and is an isotopy.
We can also see that $\mu(\alpha)=\mu(\beta)$.
We conclude that (M, \mathcal{F}) is a measured foliation.

Getting to a dynamical system

- Each leaf in this foliation is circular.

Getting to a dynamical system

- Each leaf in this foliation is circular.
- Fix the set α as above.

Getting to a dynamical system

- Each leaf in this foliation is circular.
- Fix the set α as above.
- Define the length of a leaf in \mathcal{F} by fixing a point on the leaf in α and measuring the metric distance along the leaf, following the orientation, until the leaf intersects α again.

Getting to a dynamical system

- Each leaf in this foliation is circular.
- Fix the set α as above.
- Define the length of a leaf in \mathcal{F} by fixing a point on the leaf in α and measuring the metric distance along the leaf, following the orientation, until the leaf intersects α again.

α is transverse to all of \mathcal{F}, and each leaf in \mathcal{F} intersects α exactly once.
- For a given $p_{0} \in M$, let $I\left(p_{0}\right)$ be the length of the leaf containing p_{0}.
- For a given $p_{0} \in M$, let $I\left(p_{0}\right)$ be the length of the leaf containing p_{0}.
- For a point $p_{0} \in M$, define $\pi: \mathbb{R} \times M \rightarrow M$, by letting $\pi\left(t, p_{0}\right)$ be the pre-image (under the chart map) of the point $\varphi_{\lambda}\left(p_{0}\right)+I\left(p_{0}\right) t$, which shifts the point along the image of the leaf $I\left(p_{0}\right) t$ units.
- For a given $p_{0} \in M$, let $I\left(p_{0}\right)$ be the length of the leaf containing p_{0}.
- For a point $p_{0} \in M$, define $\pi: \mathbb{R} \times M \rightarrow M$, by letting $\pi\left(t, p_{0}\right)$ be the pre-image (under the chart map) of the point $\varphi_{\lambda}\left(p_{0}\right)+I\left(p_{0}\right) t$, which shifts the point along the image of the leaf $I\left(p_{0}\right) t$ units.
- Since the chart maps in the foliation are continuous, π is continuous.
- For a given $p_{0} \in M$, let $I\left(p_{0}\right)$ be the length of the leaf containing p_{0}.
- For a point $p_{0} \in M$, define $\pi: \mathbb{R} \times M \rightarrow M$, by letting $\pi\left(t, p_{0}\right)$ be the pre-image (under the chart map) of the point $\varphi_{\lambda}\left(p_{0}\right)+I\left(p_{0}\right) t$, which shifts the point along the image of the leaf $I\left(p_{0}\right) t$ units.
- Since the chart maps in the foliation are continuous, π is continuous.
- $\pi\left(0, p_{0}\right)=p_{0}$ (since it is not translated along the leaf at all)
- For a given $p_{0} \in M$, let $I\left(p_{0}\right)$ be the length of the leaf containing p_{0}.
- For a point $p_{0} \in M$, define $\pi: \mathbb{R} \times M \rightarrow M$, by letting $\pi\left(t, p_{0}\right)$ be the pre-image (under the chart map) of the point $\varphi_{\lambda}\left(p_{0}\right)+I\left(p_{0}\right) t$, which shifts the point along the image of the leaf $I\left(p_{0}\right) t$ units.
- Since the chart maps in the foliation are continuous, π is continuous.
- $\pi\left(0, p_{0}\right)=p_{0}$ (since it is not translated along the leaf at all)
- $\pi\left(t_{1},\left(\pi\left(t_{2}, p_{0}\right)\right)=\pi\left(t_{1}+t_{2}, p_{0}\right)\right.$ (since two translations along \mathbb{R} are easily composed).
- For a given $p_{0} \in M$, let $l\left(p_{0}\right)$ be the length of the leaf containing p_{0}.
- For a point $p_{0} \in M$, define $\pi: \mathbb{R} \times M \rightarrow M$, by letting $\pi\left(t, p_{0}\right)$ be the pre-image (under the chart map) of the point $\varphi_{\lambda}\left(p_{0}\right)+I\left(p_{0}\right) t$, which shifts the point along the image of the leaf $I\left(p_{0}\right) t$ units.
- Since the chart maps in the foliation are continuous, π is continuous.
- $\pi\left(0, p_{0}\right)=p_{0}$ (since it is not translated along the leaf at all)
- $\pi\left(t_{1},\left(\pi\left(t_{2}, p_{0}\right)\right)=\pi\left(t_{1}+t_{2}, p_{0}\right)\right.$ (since two translations along \mathbb{R} are easily composed).
- Therefore the definition of a dynamical system is satisfied by (M, \mathbb{R}, π).

Verification of measure-preserving

- We have μ as the transverse measure on \mathcal{F}.

Verification of measure-preserving

- We have μ as the transverse measure on \mathcal{F}.
- Let $A \subset M$.

Verification of measure-preserving

- We have μ as the transverse measure on \mathcal{F}.
- Let $A \subset M$.
- Let ω_{M} be the Riemannian volume form on M.

Verification of measure-preserving

- We have μ as the transverse measure on \mathcal{F}.
- Let $A \subset M$.
- Let ω_{M} be the Riemannian volume form on M.
- Decompose A as a union of small transversals.

Verification of measure-preserving

- We have μ as the transverse measure on \mathcal{F}.
- Let $A \subset M$.
- Let ω_{M} be the Riemannian volume form on M.
- Decompose A as a union of small transversals.
- Think of points on M in cylindrical coordinates.

Verification of measure-preserving

- We have μ as the transverse measure on \mathcal{F}.
- Let $A \subset M$.
- Let ω_{M} be the Riemannian volume form on M.
- Decompose A as a union of small transversals.
- Think of points on M in cylindrical coordinates.

- Our chart maps preserve the orientation of leaves in the x direction, so $\pi^{-1}(t, A)$ will rotate A around M, scaled by the length of each leaf going through each point in A, so the change in θ between any two points in A is preserved under π^{-1}.

- Our chart maps preserve the orientation of leaves in the x direction, so $\pi^{-1}(t, A)$ will rotate A around M, scaled by the length of each leaf going through each point in A, so the change in θ between any two points in A is preserved under π^{-1}.
- For any fixed angle of rotation around the hyperboloid, the metric on M is determined by r and z, and that distance is represented by changes in the x-coordinates under the chart map.

- Our chart maps preserve the orientation of leaves in the x direction, so $\pi^{-1}(t, A)$ will rotate A around M, scaled by the length of each leaf going through each point in A, so the change in θ between any two points in A is preserved under π^{-1}.
- For any fixed angle of rotation around the hyperboloid, the metric on M is determined by r and z, and that distance is represented by changes in the x-coordinates under the chart map.
- The invariance of μ with respect to the x-direction after the chart map is applied, will preserve the change in the remaining components of ω_{M} under $\pi^{-1}(t, A)$.
- Therefore each point in A will have it's r and z coordinates preserved under $f^{-1}(t, A)$, and while each point will move a different distance, the change in the angle θ will be the same for each point. We conclude that ω_{M} is preserved under $\pi^{-1}(t, A)$ for any choice of $t \in \mathbb{R}$.
- Therefore each point in A will have it's r and z coordinates preserved under $f^{-1}(t, A)$, and while each point will move a different distance, the change in the angle θ will be the same for each point. We conclude that ω_{M} is preserved under $\pi^{-1}(t, A)$ for any choice of $t \in \mathbb{R}$.
- Let ν be the measure associated with ω_{M}, then, (M, \mathbb{R}, f, ν) is a measure-preserving dynamical system.

Following a similar construction

Theorem

An oriented, measured, 1-foliation (\mathcal{F}, μ) on a compact, connected, orientable 3-manifold, yields a measure-preserving dynamical system.

Following a similar construction

Theorem

An oriented, measured, 1-foliation (\mathcal{F}, μ) on a compact, connected, orientable 3-manifold, yields a measure-preserving dynamical system.

This is a simplification of the results in Plante [P], Walczak [Wa], and Hurder [H, LN]. It is sufficient for our purposes here.

Following a similar construction

Theorem

An oriented, measured, 1-foliation (\mathcal{F}, μ) on a compact, connected, orientable 3-manifold, yields a measure-preserving dynamical system.

This is a simplification of the results in Plante [P], Walczak [Wa], and Hurder [H, LN]. It is sufficient for our purposes here. \mathbb{R}^{3} of course is not compact, but we can work around this.

Back to the tori

Slanted suspensions

- Let H be a compact manifold, with $f: H \times[a, b] \rightarrow H \times[a, b]$ be a PL homeomorphism.

Slanted suspensions

- Let H be a compact manifold, with $f: H \times[a, b] \rightarrow H \times[a, b]$ be a PL homeomorphism.
- Fix a real number $I \in(0,1)$.

Slanted suspensions

- Let H be a compact manifold, with $f: H \times[a, b] \rightarrow H \times[a, b]$ be a PL homeomorphism.
- Fix a real number $I \in(0,1)$.
- For each fixed point $x \in H$ and $y \in[a, b]$, let $L_{x y}=\{(x, y+I z, z): y+I z \in[a, b]$ and $z \in[0,1]\}$.

Slanted suspensions

- Let H be a compact manifold, with $f: H \times[a, b] \rightarrow H \times[a, b]$ be a PL homeomorphism.
- Fix a real number $I \in(0,1)$.
- For each fixed point $x \in H$ and $y \in[a, b]$, let $L_{x y}=\{(x, y+I z, z): y+I z \in[a, b]$ and $z \in[0,1]\}$.
- $\mathcal{L}=\left\{L_{x y}: \forall(x, y) \in H \times[a, b]\right\}$ is a foliation of $H \times[a, b] \times[0,1]$, with leaves oriented from $H \times[a, b] \times\{0\}$ to $H \times[a, b] \times\{1\}$.

Slanted suspensions

- Let H be a compact manifold, with $f: H \times[a, b] \rightarrow H \times[a, b]$ be a PL homeomorphism.
- Fix a real number $I \in(0,1)$.
- For each fixed point $x \in H$ and $y \in[a, b]$, let $L_{x y}=\{(x, y+\mid z, z): y+I z \in[a, b]$ and $z \in[0,1]\}$.
- $\mathcal{L}=\left\{L_{x y}: \forall(x, y) \in H \times[a, b]\right\}$ is a foliation of $H \times[a, b] \times[0,1]$, with leaves oriented from $H \times[a, b] \times\{0\}$ to $H \times[a, b] \times\{1\}$.
- The slanted suspension of $H \times[a, b]$ with slant l is the foliation of the quotient space generated by the equivalence $(f(x, y), 0) \sim(x, y, 1)$, with a foliation \mathcal{F} induced by \mathcal{L}. [GKK]

Slanted suspensions

- Let H be a compact manifold, with $f: H \times[a, b] \rightarrow H \times[a, b]$ be a PL homeomorphism.
- Fix a real number $I \in(0,1)$.
- For each fixed point $x \in H$ and $y \in[a, b]$, let $L_{x y}=\{(x, y+I z, z): y+I z \in[a, b]$ and $z \in[0,1]\}$.
- $\mathcal{L}=\left\{L_{x y}: \forall(x, y) \in H \times[a, b]\right\}$ is a foliation of $H \times[a, b] \times[0,1]$, with leaves oriented from $H \times[a, b] \times\{0\}$ to $H \times[a, b] \times\{1\}$.
- The slanted suspension of $H \times[a, b]$ with slant l is the foliation of the quotient space generated by the equivalence $(f(x, y), 0) \sim(x, y, 1)$, with a foliation \mathcal{F} induced by \mathcal{L}. [GKK]
- Denote this as $M_{\sim f, l}$.

Example

- H be a single point, and $[a, b]=[0,1]$. We construct a slanted suspension with a singled fixed circular orbit.

Example

- H be a single point, and $[a, b]=[0,1]$. We construct a slanted suspension with a singled fixed circular orbit.
- Let $f:[0,1] \rightarrow[0,1]$ be given by

$$
f(x)=\left\{\begin{array}{cc}
2 x-1 & \text { if } x \in[1 / 2,1] \\
\frac{2 x}{3} & \text { else }
\end{array}\right.
$$

Example

- H be a single point, and $[a, b]=[0,1]$. We construct a slanted suspension with a singled fixed circular orbit.
- Let $f:[0,1] \rightarrow[0,1]$ be given by

$$
f(x)=\left\{\begin{array}{cc}
2 x-1 & \text { if } x \in[1 / 2,1] \\
\frac{2 x}{3} & \text { else }
\end{array}\right.
$$

- Take the slanted suspension with slant $1 / 4$. The points 0 and 1 are fixed and $f(3 / 4)=1 / 2$.
- There is a leaf from $(1 / 2,0)$ to $(3 / 4,1)$. This leaf comes from the slant, but the point $(3 / 4,1)$ has the first coordinate shifted down by the same amount as the slant of the suspension. Thus $(3 / 4,1)$ is identified with $(1 / 2,0)$, creating a fixed circular leaf in the foliation.

Theorem

Let M be a 2 dimensional PL-manifold, μ a simplicial measure on M, and f a measure-preserving PL-homeomorphism on M. Then the foliation $M_{\sim, f, I}$ given by the slanted suspension of M under f, with slant I, is measured.

Flow bordisms and plugs

We wish to describe the boundary of a $P L n$-manifold M in terms of the foliation as being parallel boundary or transverse boundary.[GKK]

Flow bordisms and plugs

We wish to describe the boundary of a $P L n$-manifold M in terms of the foliation as being parallel boundary or transverse boundary. [GKK]

- The parallel boundary is a subset of the boundary of M such that the embedding of the foliation into the upper half-space of \mathbb{R}^{n} is modeled by a foliation consisting entirely of horizontal lines.
- The transverse boundary is the subset where the same embedding consists entirely of vertical lines.
- A manifold may also be said to have corners, if the boundary of the manifold is piecewise of the same smoothness category as the manifold itself.

[GK]

Given a connected, compact manifold P, a flow bordism \mathcal{P} is an oriented 1-foliation of P, such that all boundary of P is either transverse, parallel, or corners [GKK].

Given a connected, compact manifold P, a flow bordism \mathcal{P} is an oriented 1-foliation of P, such that all boundary of P is either transverse, parallel, or corners [GKK].

Let F_{-}be the closure of the transverse boundary oriented inwards, and F_{+}be the closure of the transverse boundary oriented outwards. We have two additional properties in which we are interested.
(i) There exists an infinite leaf with an endpoint in F_{-}
(ii) There exists a manifold F and two homeomorphisms $\alpha_{-}: F \rightarrow F_{-}$, $\alpha_{+}: F \rightarrow F_{+}$such that if $\alpha_{+}(p)$ and $\alpha_{-}(q)$ are endpoints of a leaf of \mathcal{P}, then $p=q$.

- If a flow bordism satisfies condition (i), but not condition (ii), it is a semi-plug.
- A flow bordism which satisfies (ii) but not (i) is an un-plug.
- If \mathcal{P} has properties (i) and (ii), it is a plug.
- If \mathcal{P} is a plug, the manifold P is the support of \mathcal{P}.
[GKK]

Modification of a foliation using a plug requires the operation of insertion. Let \mathcal{P} be a flow bordism, and \mathcal{F} a foliation on some manifold M.

- An insertion map is an embedding of \mathcal{P}, in which both F_{-}and F_{+} are transverse to \mathcal{F}.
- A flow bordism \mathcal{P} is insertible if there is an embedding of \mathcal{P} into \mathbb{R}^{n} which is transverse to vertical lines [GKK].

Modification of a foliation using a plug requires the operation of insertion. Let \mathcal{P} be a flow bordism, and \mathcal{F} a foliation on some manifold M.

- An insertion map is an embedding of \mathcal{P}, in which both F_{-}and F_{+} are transverse to \mathcal{F}.
- A flow bordism \mathcal{P} is insertible if there is an embedding of \mathcal{P} into \mathbb{R}^{n} which is transverse to vertical lines [GKK].

We are looking for a way to modify an existing foliation, by taking leaves whose image under the chart map is that of vertical lines in \mathbb{R}^{n}, and replacing a portion of these leaves with the leaves in our flow bordism.

A flow bordism with a torus in the middle

We will construct a slanted suspension that gives us a $P L$ version of this.

A flow bordism with a torus in the middle

We are looking for a PL way to make this sort of transformation, to get the parallel boundary we need..

Theorem

Let $M=[a, b] \times[c, d]$, and $f: M \rightarrow M$ a PL-homeomorphism. Take the slanted suspension of M with slant I. If for all $p \in \partial M, f(p) \neq p-I$, then $M_{\sim, f, l}$ may be made into a flow bordism, via a leaf-preserving map $g: M_{\sim, f, l} \rightarrow M_{\sim, f, l}$. Furthermore, if $M_{\sim, f, l}$ is a measured-foliation, g may be chosen such that $g\left(M_{\sim, f, l}\right)$ remains measured.

Theorem

Let $M=[a, b] \times[c, d]$, and $f: M \rightarrow M$ a PL-homeomorphism. Take the slanted suspension of M with slant I. If for all $p \in \partial M, f(p) \neq p-I$, then $M_{\sim, f, l}$ may be made into a flow bordism, via a leaf-preserving map $g: M_{\sim, f, l} \rightarrow M_{\sim, f, l}$. Furthermore, if $M_{\sim, f, l}$ is a measured-foliation, g may be chosen such that $g\left(M_{\sim, f, l}\right)$ remains measured.

Corollary

A PL flow bordism, with an invariant transverse measure, admits a PL dynamical system, which preserves measure.

Example

Building the main result

- Start with the nested tori defined earlier

Building the main result

- Start with the nested tori defined earlier

Building the main result

- Start with the nested tori defined earlier.
- Use the slanted suspension to build a flow bordism that can be inserted around each torus.

Building the main result

- Start with the nested tori defined earlier.
- Use the slanted suspension to build a flow bordism that can be inserted around each torus.
- Show that the insertion doesn't change the topology of \mathbb{R}^{3}.

Building the main result

- Start with the nested tori defined earlier.
- Use the slanted suspension to build a flow bordism that can be inserted around each torus.
- Show that the insertion doesn't change the topology of \mathbb{R}^{3}.
- Verify that the foliation is still measured on all of \mathbb{R}^{3}.

Building the main result

- Start with the nested tori defined earlier.
- Use the slanted suspension to build a flow bordism that can be inserted around each torus.
- Show that the insertion doesn't change the topology of \mathbb{R}^{3}.
- Verify that the foliation is still measured on all of \mathbb{R}^{3}.

Building our slanted suspension

Let $M=[-3,3] \times[-2,2]$. Triangulate M, and let $f: M \rightarrow M$ be the $P L$ homeomorphism, which preserves area on 2-simplices, and shifts the vertices of the square $[-1,1] \times[-1,1]$ region down $1 / 4$.

Building our slanted suspension

Let $M=[-3,3] \times[-2,2]$. Triangulate M, and let $f: M \rightarrow M$ be the $P L$ homeomorphism, which preserves area on 2-simplices, and shifts the vertices of the square $[-1,1] \times[-1,1]$ region down $1 / 4$.

Following the leaves

- Take the slanted suspension $M_{\sim, f, 1 / 4}$

Following the leaves

- Take the slanted suspension $M_{\sim, f, 1 / 4}$
- f preserves area on the 2 -simplices here, so the slanted suspension is a measured foliation.

Following the leaves

- Take the slanted suspension $M_{\sim, f, 1 / 4}$
- f preserves area on the 2 -simplices here, so the slanted suspension is a measured foliation.
- f is the identity on the boundary of M, so the conditions in our earlier theorem are satisfied, and ($M_{\sim, f, 1 / 4}$ can be made into a measured flow bordism.

Following the leaves

- Take the slanted suspension $M_{\sim, f, 1 / 4}$
- f preserves area on the 2 -simplices here, so the slanted suspension is a measured foliation.
- f is the identity on the boundary of M, so the conditions in our earlier theorem are satisfied, and ($M_{\sim, f, 1 / 4}$ can be made into a measured flow bordism.
- The vertices of the square $[-1,1] \times[-1,1]$ are shifted down by $1 / 4$, and the slant of the suspension is $1 / 4$, so all leaves with points in the boundary of this square are circular.

Following the leaves

- Take the slanted suspension $M_{\sim, f, 1 / 4}$
- f preserves area on the 2 -simplices here, so the slanted suspension is a measured foliation.
- f is the identity on the boundary of M, so the conditions in our earlier theorem are satisfied, and ($M_{\sim, f, 1 / 4}$ can be made into a measured flow bordism.
- The vertices of the square $[-1,1] \times[-1,1]$ are shifted down by $1 / 4$, and the slant of the suspension is $1 / 4$, so all leaves with points in the boundary of this square are circular.
- We can use a Poincare return map to see where the leaves intersect M at each iteration.

Trajectories originating at ($0.1,-2$) and ($-0.1,-2$)

Trajectories originating at $(1 / 2,-2)$ and $(-1 / 2,-2)$

Trajectories originating at $(1,-2)$ and $(-1,-2)$

Removing tori from the slanted suspensions

- Our slanted suspension gives us a measured flow bordism.

Removing tori from the slanted suspensions

- Our slanted suspension gives us a measured flow bordism.
- In the middle of each of these slanted suspensions, there is a $P L$ solid torus, whose boundary of foliated by circular leaves.

Removing tori from the slanted suspensions

- Our slanted suspension gives us a measured flow bordism.
- In the middle of each of these slanted suspensions, there is a $P L$ solid torus, whose boundary of foliated by circular leaves.
- Scale up the size of the flow bordism until the total volume of the torus in the middle and the total volume of $T_{i}^{P L}$ are the same, so we can use G. Kuperberg's theorem from earlier.

Removing tori from the slanted suspensions

- Our slanted suspension gives us a measured flow bordism.
- In the middle of each of these slanted suspensions, there is a $P L$ solid torus, whose boundary of foliated by circular leaves.
- Scale up the size of the flow bordism until the total volume of the torus in the middle and the total volume of $T_{i}^{P L}$ are the same, so we can use G. Kuperberg's theorem from earlier.
- If we can carefully remove that torus, we can insert scaled copies of the slanted suspension around each of the nested tori in our earlier construction.

Removing tori from the slanted suspensions

- Our slanted suspension gives us a measured flow bordism.
- In the middle of each of these slanted suspensions, there is a PL solid torus, whose boundary of foliated by circular leaves.
- Scale up the size of the flow bordism until the total volume of the torus in the middle and the total volume of $T_{i}^{P L}$ are the same, so we can use G. Kuperberg's theorem from earlier.
- If we can carefully remove that torus, we can insert scaled copies of the slanted suspension around each of the nested tori in our earlier construction.
- We were careful to construct our earlier foliation so that all of the leaves near each nested torus are vertical, so our flow bordism will insert nicely.

Dehn Surgery

- Begin with a 3-manifold, and pick a solid torus in it's interior.
- Identify a closed curve on the boundary of the torus, the meridian, which bounds a disc.

Dehn Surgery

- Begin with a 3-manifold, and pick a solid torus in it's interior.
- Identify a closed curve on the boundary of the torus, the meridian, which bounds a disc.

Dehn Surgery

- Take another circle in the boundary of a torus, the longitude, which may or may not equal the meridian.

Dehn Surgery

- Take another circle in the boundary of a torus, the longitude, which may or may not equal the meridian.
- By removing the torus from the 3-manifold, and gluing in a new one, with the longitude glued along the meridian, we effect a Dehn Surgery [G].

Dehn Surgery

- Take another circle in the boundary of a torus, the longitude, which may or may not equal the meridian.
- By removing the torus from the 3-manifold, and gluing in a new one, with the longitude glued along the meridian, we effect a Dehn Surgery [G].
- Dehn Surgery can change the topology of the manifold [L]. We make careful choices to avoid this.

Dehn Surgery

- Take another circle in the boundary of a torus, the longitude, which may or may not equal the meridian.
- By removing the torus from the 3-manifold, and gluing in a new one, with the longitude glued along the meridian, we effect a Dehn Surgery [G].
- Dehn Surgery can change the topology of the manifold [L]. We make careful choices to avoid this.

- In our construction, we will choose a meridian on the boundary of each torus in our nested tori.
- In our construction, we will choose a meridian on the boundary of each torus in our nested tori.
- The longitude for the torus removed from the interior of our slanted suspension flow bordism will be chosen to match the meridian on the nested tori.
- In our construction, we will choose a meridian on the boundary of each torus in our nested tori.
- The longitude for the torus removed from the interior of our slanted suspension flow bordism will be chosen to match the meridian on the nested tori.
- This ensures that our gluing does not change the topology of \mathbb{R}^{3}.

Summary

- Start with our nested sequence of tori $\left(T_{n}^{P L}\right)$.

Summary

- Start with our nested sequence of tori $\left(T_{n}^{P L}\right)$.
- Foliate each of these tori by "circles".

Summary

- Start with our nested sequence of tori $\left(T_{n}^{P L}\right)$.
- Foliate each of these tori by "circles".
- Scale up the flow bordisms from the slanted suspension, so that each can be inserted around $T_{i}^{P L}$.

Summary

- Start with our nested sequence of tori $\left(T_{n}^{P L}\right)$.
- Foliate each of these tori by "circles".
- Scale up the flow bordisms from the slanted suspension, so that each can be inserted around $T_{i}^{P L}$.
- This agrees with the existing foliation, so the foliation of each torus is measured.

Summary

- Start with our nested sequence of tori $\left(T_{n}^{P L}\right)$.
- Foliate each of these tori by "circles".
- Scale up the flow bordisms from the slanted suspension, so that each can be inserted around $T_{i}^{P L}$.
- This agrees with the existing foliation, so the foliation of each torus is measured.
- G. Kuperberg's theorem gives us that the simplicial measures can be made to agree.
- The tori are large enough and nested in such a way that the insertion around $T_{i}^{P L}$ does not affect the leaves in the boundary of $T_{i+1}^{P L}$.

Summary

- Start with our nested sequence of tori $\left(T_{n}^{P L}\right)$.
- Foliate each of these tori by "circles".
- Scale up the flow bordisms from the slanted suspension, so that each can be inserted around $T_{i}^{P L}$.
- This agrees with the existing foliation, so the foliation of each torus is measured.
- G. Kuperberg's theorem gives us that the simplicial measures can be made to agree.
- The tori are large enough and nested in such a way that the insertion around $T_{i}^{P L}$ does not affect the leaves in the boundary of $T_{i+1}^{P L}$.
- Since each torus now possesses a measured-foliation, we have a non-singular, measure-preserving dynamical system on each torus.

Summary

- Start with our nested sequence of tori $\left(T_{n}^{P L}\right)$.
- Foliate each of these tori by "circles".
- Scale up the flow bordisms from the slanted suspension, so that each can be inserted around $T_{i}^{P L}$.
- This agrees with the existing foliation, so the foliation of each torus is measured.
- G. Kuperberg's theorem gives us that the simplicial measures can be made to agree.
- The tori are large enough and nested in such a way that the insertion around $T_{i}^{P L}$ does not affect the leaves in the boundary of $T_{i+1}^{P L}$.
- Since each torus now possesses a measured-foliation, we have a non-singular, measure-preserving dynamical system on each torus.
- All orbits beginning in one torus remain there, so all orbits are bounded.

Summary

- Start with our nested sequence of tori $\left(T_{n}^{P L}\right)$.
- Foliate each of these tori by "circles".
- Scale up the flow bordisms from the slanted suspension, so that each can be inserted around $T_{i}^{P L}$.
- This agrees with the existing foliation, so the foliation of each torus is measured.
- G. Kuperberg's theorem gives us that the simplicial measures can be made to agree.
- The tori are large enough and nested in such a way that the insertion around $T_{i}^{P L}$ does not affect the leaves in the boundary of $T_{i+1}^{P L}$.
- Since each torus now possesses a measured-foliation, we have a non-singular, measure-preserving dynamical system on each torus.
- All orbits beginning in one torus remain there, so all orbits are bounded.
- We therefore have a piecewise-linear, measure-preserving, non-singular dynamical system on \mathbb{R}^{3}, with each trajectory contained in a bounded set.

References I

嗇 Fathi,A., Laudenbach,F., and Poénaru, V., Thurston's Work on Surfaces, translated by Djun Kim and Dan Margalit, Mathematical Notes, 48, Princeton University Press, 2012.
Gordon, C., Dehn Surgery and 3-Manifolds, IAS/Park City Mathematics Series, Volume 16, 2006.

囯 Henriques, A., Pak, I., Volume-preserving PL-maps between polyhedra, in Lectures on Discrete and Polyhedral Geometry, http://www.math.ucla.edu/ pak/geompol8.pdf.
(Hurder, S. Lectures on Foliation Dynamics, in Foliations: Dynamics, Geometry, and Topology, (Lopez, J.A., Nicolau, M. editors), Springer, Basel, 2014.

References II

© Jones，G．S．and Yorke，J．A．The existence and non－existence of critical points in bounded flows，Journal of Differential Equations，6， 1969，236－246．
Ruperberg，G．A volume－preserving counterexample to the Seifert conjecture，Comment．Math．Helv．71，1996，no．1，70－97．
目 Kuperberg，K．and Kuperberg，G．Generalized counterexamples to the Seifert conjecture，Annals of Mathematics，Second Series，143， No．3，1996，547－576．
园 Lickorish，W．B．R．，A representation of orientable combinatorial 3－manifolds，Annals of Math．，76，1962，no．3，531－540．
囯 Moser，J．，On the volume elements of a manifold，Transactions of the American Mathematical Society，120，1965，286－294．

References III

Plante, J., Foliations with measure preserving holonomy, Annals of Mathematics, vol. 102, no. 2, 1975, 327361.
R Royden, H.L., Fitzpatrick, P.M., Real Analysis, 4th edition, Pearson, Boston, 2010
囦 Ruelle, D. and Sullivan, D. Currents, flows, and diffeomorphisms, Topology, 14, 1975, 319-327.
(Tamura, I. Topology of Foliations:An Introduction, AMS, Providence, 1992.
嗇 Walczak, P., Dynamics of foliations, groups and pseudogroups, Birkhuser Verlag, 2004.

